Campus-Wide RF: Solutions for our Changing World

Kurt Eisele-Dyrli Web Seminar Editor University Business

David Missall Customer Development & Application Engineering Sennheiser

Chris Phillips Customer Development & Application Engineering Sennheiser

Greg Koerner Manager of Digital Classroom Services Michigan State University Information Technology

Kenneth Fountain Audio/Visual Engineer Michigan State University

Thank you for joining us! The web seminar will start promptly at 2:00 ET.

Welcome to today's University Business web seminar

Campus-Wide RF: Solutions for our Changing World

Thank you for joining us! The web seminar will start shortly at 2:00 ET.

For technical support:

Use the <u>Chat panel</u> at the right of your screen. Select the name of our event producer, Jason York, and type your message.

No computer speakers? Prefer to listen privately?

Dial the phone number and access code posted in the Chat window.

To submit a question to our panel:

Use the <u>Q&A panel</u> at the right of your screen. Send your question to All Panelists, the default option.

Don't see a panel?

Click the "expand panel" triangle in front of the panel name.

Need to access the presentation at a later time?

Everyone will receive an email with links to the slides and the archive recording.

"Chat" for tech support

Campus-Wide RF: Solutions for our Changing World

Kurt Eisele-Dyrli Web Seminar Editor University Business

David Missall Customer Development & Application Engineering Sennheiser

Chris Phillips Customer Development & Application Engineering Sennheiser

Greg Koerner Manager of Digital Classroom Services Michigan State University Information Technology

Kenneth Fountain Audio/Visual Engineer Michigan State University

Welcome to today's University Business web seminar

This web seminar is sponsored by:

SENNHEISER

Campus-Wide RF: Solutions for our Changing World

Kurt Eisele-Dyrli Web Seminar Editor University Business

David Missall Customer Development & Application Engineering Sennheiser

Chris Phillips Customer Development & Application Engineering Sennheiser

Greg Koerner Manager of Digital Classroom Services Michigan State University Information Technology

Kenneth Fountain Audio/Visual Engineer Michigan State University

Housekeeping

Campus-Wide RF: Solutions for our Changing World

For technical support:

Use the <u>Chat panel</u> at the right of your screen. Select the name of our event producer, Jason York, and type your message.

No computer speakers? Prefer to listen privately?

Dial the phone number and access code posted in the Chat window.

To submit a question to our panel:

Use the <u>Q&A panel</u> at the right of your screen. Send your question to All Panelists, the default option.

Don't see a panel?

Click the "expand panel" triangle in front of the panel name.

Need to access the presentation at a later time?

Everyone will receive an email with links to the slides and the archive recording.

Campus-Wide RF: Solutions for our Changing World

Kurt Eisele-Dyrli Web Seminar Editor University Business

David Missall Customer Development & Application Engineering Sennheiser

Chris Phillips Customer Development & Application Engineering Sennheiser

Greg Koerner Manager of Digital Classroom Services Michigan State University Information Technology

Kenneth Fountain Audio/Visual Engineer Michigan State University

CHRIS PHILLIPS, DAVID MISSALL, GREGORY KOERNER, KEN FOUNTAIN CUSTOMER DEVELOPMENT & APPLICATIONS ENGINEERING/MICHIGAN STATE UNIVERSITY

Wireless Microphones in the Campus Environment

Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

Agenda

Wireless Microphone Basics

Wireless Microphone Components

RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

Microphone – A transducer that takes sound waves and turns them into an electronic audio signal

- Radio Transmitter A device that takes an electronic audio signal and converts it to a radio signal
- **Antennas** A conduit that generates or captures a radio wave
- Radio Receiver A device that takes a radio signal and converts it to an electronic audio signal
- Radio Transceiver In some systems devices can both send and receive radio signals

- Microphone A transducer that takes sound waves and turns them into an electronic audio signal
- Radio Transmitter A device that takes an electronic audio signal and converts it to a radio signal

- Radio Receiver A device that takes a radio signal and converts it to an electronic audio signal
- Radio Transceiver In some systems devices can both send and receive radio signals

- Microphone A transducer that takes sound waves and turns them into an electronic audio signal
- Radio Transmitter A device that takes an electronic audio signal and converts it to a radio signal
- Antennas A conduit that generates or captures a radio wave
- Radio Receiver A device that takes a radio signal and converts it to an electronic audio signal
- Radio Transceiver In some systems devices can both send and receive radio signals

- Microphone A transducer that takes sound waves and turns them into an electronic audio signal
- Radio Transmitter A device that takes an electronic audio signal and converts it to a radio signal

Antennas – A conduit that generates or captures a radio wave

- Radio Receiver A device that takes a radio signal and converts it to an electronic audio signal
- Radio Transceiver In some systems devices can both send and receive radio signals

- Microphone A transducer that takes sound waves and turns them into an electronic audio signal
- ► Antennas A conduit that generates or captures a radio wave
- Radio Transmitter A device that takes an electronic audio signal and converts it to a radio signal
- Radio Receiver A device that takes a radio signal and converts it to an electronic audio signal
- Radio Transceiver In some systems devices can both send and receive radio signals

Microphone – A transducer that takes sound waves and turns them into an electronic audio signal

Antennas – A conduit that generates or captures a radio wave

Radio Transmitter – A device that takes an electronic audio signal and converts it to a radio signal

Radio Receiver – A device that takes a radio signal and converts it to an electronic audio signal

Radio Transceiver – A device that can both send and receive radio signals Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

Waves – A closer look

Sound Waves— (Mechanical waves) that propagate through a physical medium (i.e. air, water, solid objects, or plasma)

Radio Waves – (Electromagnetic waves) charged particles and don't need a physical medium to propagate.

- Wave Propagation Longer wavelengths are able to pass through and around physical barriers easier than shorter wavelengths.
- **Reflection** Shorter wavelengths reflect off structure more than longer wavelengths.
- Range Shorter wavelengths require more power to cover the same distance as longer wavelengths. (Shorter More Power)
- Cable Loss Shorter wavelengths have more loss than longer wavelengths over the same distance of 50 Ohm cable.
- **Antenna Length** Longer Wavelengths require longer antennas than Shorter Wavelengths.

Effects of Physical Structure on RF

- Highly Reflective Metal Structure, Underground
- **Reflective** Concrete, Masonry, Stone
- Partially Transparent Wood, Drywall, Windows*
- **Transparent** Outdoor Environments

Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

VHF (169 MHz-172 MHz, 174–216 MHz)

Good wave propagation, Longer antennas than UHF

Interference from DTV similar to UHF

UHF (470-608 MHz), STL Band (941 MHz-960 MHz)

- Good wave propagation, Reasonable antenna length
- Interference from DTV re-packing requires frequency planning/Unlicensed WSD (White Space Devices)
- 50mW maximum RF transmission power in US, Typical 10mW 30 mW

DECT (1920-1930 MHz US, 1880-1900 MHz Europe, Some contries use 1910-1930 MHz)

- More reflective than UHF signals
- Bi-Directional communication between mobile and stationary devices, coordinates frequencies automatically
- 250mW maximum RF transmission power in US, can adjust power down to low levels (example 0.3mW)

Unlicensed Bands

- ▶ WiFi traffic in the 2.4 and 5 GHz ranges make wireless mic operation unpredictable
- Amateur radio and consumer devices are common in the 902 928 MHz range
- With the expansion of IOT, these ranges are becoming more congested

Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

Interference from Intermodulation

- Intermodulation When two or more wireless microphone transmitters are operating too close to one another the electronic components can be overdriven to create a type of interference called intermodulation.
- We can predict which frequencies intermodulation might occur on and choose frequencies that avoid interference.

2 transmitters			
1 foot apart			
			<u>/</u>
and have been been	con March	here have	energy and a second constants

Frequency 1	500.000 MHz
Frequency 2	501.000 MHz
2 nd Order	1000 MHz
2 nd Order	1002 MHz
Lower 3 rd	499.000 MHz
Upper 3 rd	502.000 MHz
Lower 5 th	498.000 MHz
Upper 5 th	503.000 MHz

Science Experiment

Intermodulation

UHF Analog and Digital

1.9 GHz DECT Wireless Microphones

- DECT "Digital Enhanced Cordless Telecommunications"
- In North America DECT devices operate between 1920 and 1930 MHz (10 MHz)
- **Five** channels (in North America)
- Bi-directional communication

TDMA

- Time Division Multiple Access
- Allows for multiple devices to share the same channel by dividing the signal into different time slots
- Latency

Science Experiment

► DECT

Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

Frequency Planning DTV (Digital Television)

Varies by market

Each DTV channel is 6 MHz wide in the US

Frequency Planning DTV (Digital Television)

- Varies by market
- Each DTV channel is 6 MHz wide
- Changes with new regulations

Resources

- FCC's DTV Reception Map

https://www.fcc.gov/media/engineering/dtvmaps

DTV Coverage												
Signal Legends												
ull Str	rong	iil Mode	erate	ıl We	<mark>il ×</mark> Weak No Signal							
Inc	Incentive Auction (IA) Information											
Mouse over the letter for more details about that callsign.												
Ca	allsign	2	Netwo	ork	Ch i	# Band	IA					
Cli	ck on	callsig	in for d	etai	1							
ulli u	WCLH	-	IND		22	UHF	242					
all	WMC	R-TV	IND		32	UHF	R					
all	WVE/	A-TV	UNIM		50	UHF	R					
atl	WFTT	T-TV	UNIV		62	UHF						
atl	WED	Q	PBS		16	UHF	OS					
all	WTO	G	THE		44	UHF	R					
all	WFTS	5-TV	ABC		28	UHF	R					
all	WXP)	K-TV	ION		66	UHF	R					
all	WTSP	þ	CBS		10	Hi-V						
all	WTV	ŕ	FOX		13	Hi-V						
all	WFLA WTTA	A-TV A	NBC MyNe		8 38	Hi-V	R					
atl	WED	U	PBS		3	Hi-V						
all	WAR	P-CD				UHF	R					
all	wws	в	ABC		40	UHF						
all	WRM	D-CD				UHF	R					
all	WSVT	r-LD				UHF						
all	WSPF	-CD				UHF	R					
all	WXAX	K-CD				UHF						
al	WZRA	A-CD				UHF	R					

Please note:

These predictions are based on a terrain-sensitive propagation model resembling but not identical to the propagation model used when calculating service and interference contours for licensed broadcast television stations. Actual signal strength may vary based on a variety of factors, including, but not limited to, building construction, neighboring buildings and trees, weather, and specific reception hardware. Your signal strength may be significantly lower in extremely hilly areas. Click on a callsign for details about that station's Incentive Auction repacking plans.

Frequency Planning

Built in Tools

- Walk Test
- Built in Scanning
- Pre-coordinated Frequencies
- Monitoring and Coordination Software
 - Wireless Systems Manager
 - SIFM (Sennheiser Intermodulation Frequency Manager)
- RF Scanner these can vary in different types, feature sets and price points.
 - RF Explorer: \$200
 - Signal Hound: \$1000
 - Tektronix RSA306: \$3000

Channel	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7	Bank 8	Bank 9	Bank 10
1	470,100	476,100	488,100	494,100	500,100	506,100	470,200	488,200	476,200	488,400
2	470,500	476,500	488,500	494,500	500,500	506,500	470,600	488,600	476,600	488,850
З	471,050	477,050	489,050	495,050	501,050	506,950	471,150	489,150	477,150	489,450
4	471,750	478,200	489,750	495,750	501,750	507,450	471,850	489,850	477,850	490,300
5	472,200	488,100	490,200	496,200	502,200	508,000	472,300	490,700	478,300	490,800
6	472,800	488,600	490,800	496,800	502,800	508,600	472,900	491,300	506,800	491,450
7	473,650	489,450	491,550	497,550	503,600	509,250	473,650	492,600	507,700	492,350
8	474,750	490,050	492,750	498,750	504,800	510,000	474,850	493,050	508,350	493,050
9	475,250	491,050	506,100	499,750	505,650	510,800	506,300	470,250	509,550	493,600
10	506,150	491,800	507,200	471,400	471,700	511,700	508,550	470,750	510,300	471,500
11	506,950	492,250	509,250	473,750	472,450	470,100	509,400	472,250	510,900	473,150
12	511,000	492,900	510,700	474,250	474,350	474,950	511,750	473,050	511,700	474,150
13	508,500	473,200	511,600	475,150	475,650	481,500	504,250	477,750	502,850	485,700
14	512,300	506,150	502,300	475,800	470,250	471,700	503,350	482,900	500,850	484,300
15	514,350	508,250	505,600	470,100	478,050	477,100	501,500	475,500	500,350	483,500
16	515,550	511,800	510,050	504,850	480,300	473,000	504,900	483,950	503,900	476,000

Frequency Planning

Built in Tools

- Walk Test
- Built in Scanning
- Pre-coordinated Frequencies
- Monitoring and Coordination Software
 - Wireless Systems Manager
 - SIFM (Sennheiser Intermodulation Frequency Manager)
- RF Scanner these can vary in different types, feature sets and price points.
 - RF Explorer: \$200
 - Signal Hound: \$1000
 - Tektronix RSA306: \$3000

Science Experiment

Receiver Scan

Frequency Planning

Built in Tools

- Walk Test
- Built in Scanning —
- Pre-coordinated Frequencies
- Monitoring and Coordination Software
 - Wireless Systems Manager
 - SIFM (Sennheiser Intermodulation Frequency Manager)
- **RF Scanner** these can vary in different types, feature sets and price points.
 - RF Explorer: \$200
 - Signal Hound: \$1000
 - Tektronix RSA306: \$3000

ON OFF

RF50Q

System Design

Remote antennas

- RF cable in a system creates loss between the receiving antenna and the receiver
- Some antennas create gain as part of their design, this can overcome cable loss
- When more than -6dB of cable loss is present the system make become unstable
 - Antenna Gain
 - RF Boosters
- When more than +4 dB of gain is present the receiver can be overdriven
- www.qsl.net/co8tw/Coax_Calculator.htm

50 Ohm Coaxial Cable Data:

Cable Type	Frequency [MHz]	Attenuation [db/100']	Attenuation [dB/100m]	Cable diameter
RG-174/U	400 700	19.0 27.0	62.3 88.6	0.110 / 2.8
RG-58/U	400 700	9.1 12.8	29.9 42.0	0.195 / 4.95
RG-8X	400 700	6.6 9.1	21.7 29.9	0.242 / 6.15
RG-8/U	400 700	4.2 5.9	13.2 19.4	0.405 / 10.3
RG-213	400 700	4.5 6.5	14.8 21.8	0.405 / 10.3
Belden 9913	400 700	2.7 3.6	8.9 11.8	0.405 / 10.3
Belden 9913F	400 700	2.9 3.9	9.5 12.8	0.405 / 10.3

UHF Microphones on Adjacent Floors

- Frequency coordination Plan to avoid the primary carriers and IM3 products in rooms on adjacent floors.
- Reduce transmit power set the transmitter RF power to the lowest setting that allows you to walk the entire room without a dropout
- Localize antennas Utilize remote receiving antennas or locate receivers in the room

UHF Microphones on Adjacent Floors

Frequency coordination

Channel	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7	Bank 8	Bank 9	Bank 10
1	470,100	476,100	488,100	494,100	500,100	506,100	470,200	488,200	476,200	488,400
2	470,500	476,500	488,500	494,500	500,500	506,500	470,600	488,600	476,600	488,850
3	471,050	477,050	489,050	495,050	501,050	506,950	471,150	489,150	477,150	489,450
4	471,750	478,200	489,750	495,750	501,750	507,450	471,850	489,850	477,850	490,300
5	472,200	488,100	490,200	496,200	502,200	508,000	472,300	490,700	478,300	490,800
6	472,800	488,600	490,800	496,800	502,800	508,600	472,900	491,300	506,800	491,450
7	473,650	489,450	491,550	497,550	503,600	509,250	473,650	492,600	507,700	492,350
8	474,750	490,050	492,750	498,750	504,800	510,000	474,850	493,050	508,350	493,050
9	475,250	491,050	506,100	499,750	505,650	510,800	506,300	470,250	509,550	493,600
10	506,150	491,800	507,200	471,400	471,700	511,700	508,550	470,750	510,300	471,500
11	506,950	492,250	509,250	473,750	472,450	470,100	509,400	472,250	510,900	473,150
12	511,000	492,900	510,700	474,250	474,350	474,950	511,750	473,050	511,700	474,150
13	508,500	473,200	511,600	475,150	475,650	481,500	504,250	477,750	502,850	485,700
14	512,300	506,150	502,300	475,800	470,250	471,700	503,350	482,900	500,850	484,300
15	514,350	508,250	505,600	470,100	478,050	477,100	501,500	475,500	500,350	483,500
16	515,550	511,800	510,050	504,850	480,300	473,000	504,900	483,950	503,900	476,000

UHF Microphones on Adjacent Floors

Scan Results

	3	12	11	10	11	2	4	12	9	12
Channel	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7	Bank 8	Bank 9	Bank 10
1	470,100	476,100	488,100	494,100	500,100	506,100	470,200	488,200	476,200	488,400
2	470,500	476,500	488,500	494,500	500,500	506,500	470,600	488,600	476,600	488,850
3	471,050	477,050	489,050	495,050	501,050	506,950	471,150	489,150	477,150	489,450
4	471,750	478,200	489,750	495,750	501,750	507,450	471,850	489,850	477,850	490,300
5	472,200	488,100	490,200	496,200	502,200	508,000	472,300	490,700	478,300	490,800
6	472,800	488,600	490,800	496,800	502,800	508,600	472,900	491,300	506,800	491,450
7	473,650	489,450	491,550	497,550	503,600	509,250	473,650	492,600	507,700	492,350
8	474,750	490,050	492,750	498,750	504,800	510,000	474,850	493,050	508,350	493,050
9	475,250	491,050	506,100	499,750	505,650	510,800	506,300	470,250	509,550	493,600
10	506,150	491,800	507,200	471,400	471,700	511,700	508,550	470,750	510,300	471,500
11	506,950	492,250	509,250	473,750	472,450	470,100	509,400	472,250	510,900	473,150
12	511,000	492,900	510,700	474,250	474,350	474,950	511,750	473,050	511,700	474,150
13	508,500	473,200	511,600	475,150	475,650	481,500	504,250	477,750	502,850	485,700
14	512,300	506,150	502,300	475,800	470,250	471,700	503,350	482,900	500,850	484,300
15	514,350	508,250	505,600	470,100	478,050	477,100	501,500	475,500	500,350	483,500
16	515,550	511,800	510,050	504,850	480,300	473,000	504,900	483,950	503,900	476,000

DECT Microphones on Adjacent Floors

- Frequency coordination DECT microphones coordinate frequencies automatically. There will be a maximum specified per room by the manufacturer
- Reduce transmit power set the transmitter to the lowest setting that allows you to walk the entire room without a dropout. RF should drop when you leave the room.
- Localize Mobile and Stationary devices should have a line of sight to each other.

DECT Microphones on Adjacent Floors

When RF energy is adjusted to remain inside the room, each space becomes an independent zone

Three Room Scenario

16 channels of wireless microphones in adjacent rooms

Rooms on the same floor

<----->

Room 116 has 8 Channels of Wireless

Three Room Scenario

16 channels of wireless microphones in adjacent rooms

Rooms on the same floor

<---->

Room 116 has 8 Channels of Wireless

Three Room Scenario

- In this scenario none of the banks provide enough channels to safely coordinate all three room
 - We can create custom frequency coordination
 - An easier solution may be to install a different frequency range in one of the three rooms

Scan Results

	3	12	11	10	11	2	4	12	9	12
Channel	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7	Bank 8	Bank 9	Bank 10
1	470,100	476,100	488,100	494,100	500,100	506,100	470,200	488,200	476,200	488,400
2	470,500	476,500	488,500	494,500	500,500	506,500	470,600	488,600	476,600	488,850
3	471,050	477,050	489,050	495,050	501,050	506,950	471,150	489,150	477,150	489,450
4	471,750	478,200	489,750	495,750	501,750	507,450	471,850	489,850	477,850	490,300
5	472,200	488,100	490,200	496,200	502,200	508,000	472,300	490,700	478,300	490,800
6	472,800	488,600	490,800	496,800	502,800	508,600	472,900	491,300	506,800	491,450
7	473,650	489,450	491,550	497,550	503,600	509,250	473,650	492,600	507,700	492,350
8	474,750	490,050	492,750	498,750	504,800	510,000	474,850	493,050	508,350	493,050
9	475,250	491,050	506,100	499,750	505,650	510,800	506,300	470,250	509,550	493,600
10	506,150	491,800	507,200	471,400	471,700	511,700	508,550	470,750	510,300	471,500
11	506,950	492,250	509,250	473,750	472,450	470,100	509,400	472,250	510,900	473,150
12	511,000	492,900	510,700	474,250	474,350	474,950	511,750	473,050	511,700	474,150
13	508,500	473,200	511,600	475,150	475,650	481,500	504,250	477,750	502,850	485,700
14	512,300	506,150	502,300	475,800	470,250	471,700	503,350	482,900	500,850	484,300
15	514,350	508,250	505,600	470,100	478,050	477,100	501,500	475,500	500,350	483,500
16	515,550	511,800	510,050	504,850	480,300	473,000	504,900	483,950	503,900	476,000

Three Room Scenario

- ► In a DECT application, it becomes critical to contain the each systems RF to each space
- If this is done each room can operate as an independent Zone

Agenda

Wireless Microphone Basics

Wireless Microphone Components RF Theory Frequencies for Wireless Microphones Analog, Digital, and DECT

System Planning and Design

Management Tools for Wireless Microphones

- Transmitter and Receiver systems (UHF) Although these systems have a one way relationship, it can be possible to monitor battery life of the transmitter, RF power, System status
- Transceiver Systems (DECT) These systems have a bi-directional relationship and offer the ability to both monitor and adjust settings on both the mobile and stationary devices while the system is in use. Frequency coordination is automatic.

SENNHEISER

ABOUT

MICHIGAN STATE UNIVERSITY

- 5300-acre campus
- 563 buildings
- 5700 Faculty and academic staff

Client Services

Staff members: Eight

Coverage from: 6:30AM to 10PM

A/V IT Integration
1 Manager
1 Engineer
3 A/V Technicians
1 Equipment Coordinator
1 Office facilitator

Wireless MIC Locations

Classrooms

- Roughly 500 wireless mic systems on campus

Stadiums

- Multiple sporting arenas

Press conferences

- Media center
- On location

Conference rooms

Live events

Classrooms

- 500 wireless mic systems
- Wireless mic is key for Hearing assistance system
- Mic needed for closed captioning
- Mic needed for virtual classroom

Wireless System Monitoring

Туре	Name	Location	Device Information	Battery Level	Battery Health	Identify :
	<u>CHARGER</u>	<u>AKR 136</u>				
	<u>CHARGER</u>	<u>AKR 140</u>		100%	99%	•
	<u>CHARGER</u>	<u>AKR 138</u>		100%	100%	•
	<u>CHARGER</u>	<u>AKR 134</u>		- 100%	- 100%	•
	<u>CHARGER</u>	<u>AKR 135</u>		100%	100%	•
	<u>CHARGER</u>	<u>EB 1234</u>		100%	100%	0
-	<u>CHARGER</u>	<u>FEE E111</u>		100% -	99% -	0

Microphone Tier 2 Support

Other user 200 AIGAN STATE

- Live support
- Network collaboration
- Firmware Updates
- Maintenance Item monitoring-inventory

Stadiums

- 120 wireless mic systems
- Wireless Headsets
- Ref mics
- Press, TV
- Engagement areas

Press conferences

- Multiple Wireless
- Television feeds
- Radio feeds
- On site

Conference rooms

• Presenter feed for Video conferencing system

Live events

Balance Up to 24 wireless
 mics

SENNHEISER

Thank you!

Contact **David Missall** Manager - Customer Development & Applications Engineering david.missall@Sennheiser.com

Chris Phillips Customer Development & Applications Engineering chris.phillips@sennheiser.com

Campus-Wide RF: Solutions for our Changing World <u>Q&A</u>

Kurt Eisele-Dyrli Web Seminar Editor University Business

David Missall Customer Development & Application Engineering Sennheiser

Chris Phillips Customer Development & Application Engineering Sennheiser

Greg Koerner Manager of Digital Classroom Services Michigan State University Information Technology

Kenneth Fountain Audio/Visual Engineer Michigan State University

Have a question for our presenters? Submit it through the <u>Q&A</u> at the right.

Q&A

University Business is the leader in editorial coverage of news, trends and current issues in higher education.

Subscribe for FREE and stay up-to-date through our print magazine, digital edition, enewsletters and web seminars.

Print magazine

Web seminars

Thank you for joining us!

The archive recording of this web seminar will be available for you to review, or share with members of your team, at:

http://www.UniversityBusiness.com/Web-Seminars

You will also receive an email with a link to the slides.

